Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse.

نویسندگان

  • Chris J Roome
  • Emmet M Power
  • Ruth M Empson
چکیده

The sodium/calcium exchanger (NCX) is a widespread transporter that exchanges sodium and calcium ions across excitable membranes. Normally, NCX mainly operates in its "forward" mode, harnessing the electrochemical gradient of sodium ions to expel calcium. During membrane depolarization or elevated internal sodium levels, NCX can instead switch the direction of net flux to expel sodium and allow calcium entry. Such "reverse"-mode NCX operation is frequently implicated during pathological or artificially extended periods of depolarization, not during normal activity. We have used fast calcium imaging, mathematical simulation, and whole cell electrophysiology to study the role of NCX at the parallel fiber-to-Purkinje neuron synapse in the mouse cerebellum. We show that nontraditional, reverse-mode NCX activity boosts the amplitude and duration of parallel fiber calcium transients during short bursts of high-frequency action potentials typical of their behavior in vivo. Simulations, supported by experimental manipulations, showed that accumulation of intracellular sodium drove NCX into reverse mode. This mechanism fueled additional calcium influx into the parallel fibers that promoted synaptic transmission to Purkinje neurons for up to 400 ms after the burst. Thus we provide the first functional demonstration of transient and fast NCX-mediated calcium entry at a major central synapse. This unexpected contribution from reverse-mode NCX appears critical for shaping presynaptic calcium dynamics and transiently boosting synaptic transmission, and is likely to optimize the accuracy of cerebellar information transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Reversal of the Sodium - Calcium Exchanger Boosts Presynaptic Calcium and 1 Synaptic Transmission at a Cerebellar Synapse

Transient Reversal of the Sodium-Calcium Exchanger Boosts Presynaptic Calcium and 1 Synaptic Transmission at a Cerebellar Synapse 2 Chris J. Roome, Emmet M. Power and Ruth M. Empson 3 4 Department of Physiology, Brain Health Research Centre, Otago School of Medical Sciences, 5 University of Otago, Dunedin, New Zealand 6 7 Running Head: Reversal of Na/Ca exchanger at synapses 8 9 *Corresponding ...

متن کامل

Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse

Fast synaptic transmission is important for rapid information processing. To explore the maximal rate of neuronal signaling and to analyze the presynaptic mechanisms, we focused on the input layer of the cerebellar cortex, where exceptionally high action potential (AP) frequencies have been reported in vivo. With paired recordings between presynaptic cerebellar mossy fiber boutons and postsynap...

متن کامل

Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse.

High levels of activity at a synapse can lead to spillover of neurotransmitter from the synaptic cleft. This extrasynaptic neurotransmitter can diffuse to neighboring synapses and modulate transmission via presynaptic receptors. We studied such modulation at the synapse between granule cells and Purkinje cells in rat cerebellar slices. Brief tetanic stimulation of granule cell parallel fibers a...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 109 6  شماره 

صفحات  -

تاریخ انتشار 2013